OOV detection in LVCSR using neural networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F08%3APU82717" target="_blank" >RIV/00216305:26230/08:PU82717 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
OOV detection in LVCSR using neural networks
Original language description
Confidence measures and classifying techniques are widely used for the recognition error detection task in LVCSR (Large Vocabulary Continuous Speech Recognition). But in many recognition scenarios the amount of words not included in the dictionary (e.g.real names, neologisms) lead to so-called OOV (Out Of Vocabulary) errors which increase the WER (Word Error Rate) even more. The hereby described work acknowledges and investigates further improvements of an OOV detection task performed by combining strong and weak phone posterior features using neural networks based on [ICASSP08] and the use of phone context.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. STUDENT EEICT 2008
ISBN
978-80-214-3617-6
ISSN
—
e-ISSN
—
Number of pages
3
Pages from-to
—
Publisher name
Faculty of Electrical Engineering and Communication BUT
Place of publication
Brno
Event location
FEKT VUT v Brně
Event date
Apr 24, 2008
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—