Trajectory classification based on Hidden Markov Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F08%3APU86437" target="_blank" >RIV/00216305:26230/08:PU86437 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Trajectory classification based on Hidden Markov Models
Original language description
This paper presents a method for statistical modeling and classification of motion trajectories using Hidden Markov Models. Mass recordings from visual surveillance are processed to extract objects trajectories. Hidden Markov Models of classes of behaviour are created upon some annotated trajectories. In this way, information about complex object behaviour of objects can be discovered.<br><br>Additionally, an experiment shows the successful application of Hidden Markov Models on trajectories of people in an underground station in Roma. Finally, a comparison of efficiency on different data sets, is discussed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06008" target="_blank" >LC06008: Center of Computer Graphics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 18th International Conference on Computer Graphics and Vision
ISBN
978-5-9556-0112-0
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
Lomonosov Moscow State University
Place of publication
Moscow
Event location
Moskva
Event date
Jun 23, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—