Additional Predictive Value of Microarray Data Compared to Clinical Variables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F09%3APU86236" target="_blank" >RIV/00216305:26230/09:PU86236 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Additional Predictive Value of Microarray Data Compared to Clinical Variables
Original language description
Microarrays as a promising technology for prediction of cancer diagnosis have attracted attention of many researchers in recent years. Researchers often neglect clinical data used for prediction of diagnosis compared to pre-microarray era. An important problem is determination of an additional predictive value of microarray data in relation to clinical variables. We propose a new two-step method combining logistic regression and BinomialBoosting models, to determine the additional predictive value of microarray data. This method is evaluated on two benchmark breast cancer datasets together with other already published method. The new method can combine clinical and microarray data more effectively and enables simple addition of various types of data into the combined prediction. <br>
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/2B06052" target="_blank" >2B06052: Determination of markers, screening and early diagnostics of cancer diseases using highly automated processing of multidimensional biomedical images</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PRIB 2009, 4th IAPR International Conference on Pattern Recognition in Bioinformatics
ISBN
978-0-9563399-0-4
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
University of Sheffield
Place of publication
Sheffield
Event location
Sheffield
Event date
Sep 7, 2009
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—