Fast Acceleration of Ultimately Periodic Relations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F10%3APU89578" target="_blank" >RIV/00216305:26230/10:PU89578 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fast Acceleration of Ultimately Periodic Relations
Original language description
Computing transitive closures of integer relations is the key to finding precise invariants of integer programs. In this paper, we describe an efficient algorithm for computing the transitive closures of difference bounds, octagonal and finite monoid affine relations. On the theoretical side, this framework provides a common solution to the acceleration problem, for all these three classes of relations. In practice, according to our experiments, the new method performs up to four orders of magnitude better than the previous ones, making it a promising approach for the verification of integer programs.<br>
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Aided Verification
ISBN
978-3-642-14294-9
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
—
Publisher name
Springer Verlag
Place of publication
Berlin
Event location
Edinburgh
Event date
Aug 15, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—