Mining Moving Object Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F11%3APU96184" target="_blank" >RIV/00216305:26230/11:PU96184 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mining Moving Object Data
Original language description
Currently there is a lot of devices that provide information about objects and this together with location-based services accumulate huge volume of moving object data, including trajectories. This paper deals with two useful analysis tasks - mining moving object data patterns and trajectory outlier detection. We also present our experience with the TOP-EYE trajectory outlier detection algorithm that we applied on two real-world data sets.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/VG20102015006" target="_blank" >VG20102015006: Tools and methods for video and image processing for the fight against terrorism</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Eleventh International Conference on Informatics
ISBN
978-80-89284-94-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
16-21
Publisher name
Faculty of Electrical Engineering and Informatics, University of Technology Košice
Place of publication
Košice
Event location
Rožňava
Event date
Nov 16, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—