EnMS: Early non-Maxima Suppression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU95988" target="_blank" >RIV/00216305:26230/12:PU95988 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
EnMS: Early non-Maxima Suppression
Original language description
Detection of objects in images using statistical classifiers is a well studied and documented technique. Different applications of such detectors often require selection of the image position with the highest response of the detector -- they perform non-maxima suppression. This article introduces the concept of Early non-Maxima Suppression, which aims to reduce necessary computations by making the non-Maxima Suppression decision early based on incomplete information provided by a partially evaluated classifier. We show that the error of one such speculative decision with respect to a decision made based on response of the complete classifier can be estimated by collecting statistics on unlabeled data. The article then considers a sequential strategyof multiple early non-Maxima suppression tests which follows the structure of soft-cascade detectors commonly used for object detection. We also show that an optimal (fastest for requested error rate) suppression strategy can be created
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06008" target="_blank" >LC06008: Center of Computer Graphics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PATTERN ANALYSIS AND APPLICATIONS
ISSN
1433-7541
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
121-132
UT code for WoS article
—
EID of the result in the Scopus database
—