Research of Imgae Features for Classification of Wear Debris
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU98178" target="_blank" >RIV/00216305:26230/12:PU98178 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Research of Imgae Features for Classification of Wear Debris
Original language description
The wear debris of various engineering equipment (such as combustion engines, gearboxes, etc.) consists of particles of metal which can be obtained from lubricants used in such machine parts. The analysis the wear particles is very important for early detection and prevention of failures in engineering equipment. The analysis is often done through classification of individual wear particles obtained by analytical ferrography. In this paper, we present a study of feature extraction methods for a classification of the wear particles based on visual similarity (using supervised machine learning). The main contribution of the paper is the comparison of nine selected feature types in the context of three state-of-the-art learning models. Another contribution is the large public database of binary images of particles which can be used for further experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Machine Graphics and Vision
ISSN
1230-0535
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
15
Pages from-to
1-15
UT code for WoS article
—
EID of the result in the Scopus database
—