All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Tree Width of Separation Logic with Recursive Definitions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F13%3APU106318" target="_blank" >RIV/00216305:26230/13:PU106318 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-642-38574-2_2" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-642-38574-2_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-38574-2_2" target="_blank" >10.1007/978-3-642-38574-2_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Tree Width of Separation Logic with Recursive Definitions

  • Original language description

    Separation Logic is a widely used formalism for describing dynamically allocated linked data structures, such as lists, trees, etc. The decidability status of various fragments of the logic constitutes a long standing open problem. Current results report on techniques to decide satisfiability and validity of entailments for Separation Logic(s) over lists (possibly with data). In this paper we establish a more general decidability result. We prove that any Separation Logic formula using rather general recursively defined predicates is decidable for satisfiability, and moreover, entailments between such formulae are decidable for validity. These predicates are general enough to define (doubly-) linked lists, trees, and structures more general than trees, such as trees whose leaves are chained in a list. The decidability proofs are by reduction to decidability ofMonadic Second Order Logic on graphs with bounded tree width.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GAP103%2F10%2F0306" target="_blank" >GAP103/10/0306: Static and Dynamic Verification of Programs with Advanced Features of Concurrency and Unboundedness</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automated Deduction - CADE-24

  • ISBN

    978-3-642-38573-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

    21-38

  • Publisher name

    Springer Verlag

  • Place of publication

    Berlin

  • Event location

    The Crowne Plaza Resort in Lake Placid, New York

  • Event date

    Jun 9, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article