PSO-based Constrained Imbalanced Data Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F13%3APU106418" target="_blank" >RIV/00216305:26230/13:PU106418 - isvavai.cz</a>
Result on the web
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=10438" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=10438</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
PSO-based Constrained Imbalanced Data Classification
Original language description
The paper deals with classification of highly imbalanced data with accuracy constraints for the minority class. We solve this problem by our proposed meta-learning method that uses cost-sensitive logistic regression to generate initial candidate models. These models can be used as an initial solutions for various optimization algorithms. This paper is aimed for using Particle Swarm Optimization (PSO) to handle the constrained imbalanced classification problem. Experiments, comparing with Genetic Algorithm (GA), show that the swarm intelligence approach is suitable for this problem and outperforms GA.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Twelth International Conference on Informatics INFORMATICS'2013
ISBN
978-80-8143-127-2
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
234-239
Publisher name
The University of Technology Košice
Place of publication
Spišská Nová Ves
Event location
Spišská Nová Ves
Event date
Nov 5, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—