All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

VGEN: Fast Vertical Mining of Sequential Generator Patterns

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F14%3APU111959" target="_blank" >RIV/00216305:26230/14:PU111959 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-10160-6_42" target="_blank" >http://dx.doi.org/10.1007/978-3-319-10160-6_42</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-10160-6_42" target="_blank" >10.1007/978-3-319-10160-6_42</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    VGEN: Fast Vertical Mining of Sequential Generator Patterns

  • Original language description

    Sequential pattern mining is a popular data mining task with wide applications. However, the set of all sequential patterns can be very large. To discover fewer but more representative patterns, several compact representations of sequential patterns have been studied. The set of sequential generatorsis one the most popular representations. It was shown to provide higher accuracy for classification than using all or only closed sequential patterns. Furthermore, mining generators is a key step in several other data mining tasks such as sequential rule generation. However, mining generators is computationally expensive. To address this issue, we propose a novel mining algorithm namedVGEN (Vertical sequential GENerator miner). An experimental study on five real datasets shows that VGEN is up to two orders of magnitude faster than the state-of-the-art algorithms for sequential generator mining.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Data Warehousing and Knowledge Discovery

  • ISBN

    978-3-319-10159-0

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    476-488

  • Publisher name

    Springer Verlag

  • Place of publication

    Munich

  • Event location

    Mnichov

  • Event date

    Sep 2, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article