Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F14%3APU111964" target="_blank" >RIV/00216305:26230/14:PU111964 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-10762-2_79" target="_blank" >http://dx.doi.org/10.1007/978-3-319-10762-2_79</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-10762-2_79" target="_blank" >10.1007/978-3-319-10762-2_79</a>
Alternative languages
Result language
angličtina
Original language name
Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction
Original language description
Modern traffic sensors can measure various road traffic variables such as the traffic flow and average speed. However, some measurements can lead to incorrect data which cannot further be used in subsequent processing tasks such as traffic prediction or intelligent control. In this paper, we propose a method selecting a subset of input sensors for a support vector regression (SVR) model which is used for traffic prediction. The method is based on a multimodal and multiobjective NSGA-II algorithm. The multiobjective approach allowed us to find a good trade off between the prediction error and the number of sensors in real-world situations when many traffic data measurements are unavailable.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Parallel Problem Solving from Nature - PPSN XIII
ISBN
978-3-319-10761-5
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
802-811
Publisher name
Springer Verlag
Place of publication
Heidelberg
Event location
Ljubljana Exhibition and Convention Centre
Event date
Sep 13, 2014
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
000358196900079