Design Of Autonomous Algorithmic Models For Time Series Prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F14%3APU111966" target="_blank" >RIV/00216305:26230/14:PU111966 - isvavai.cz</a>
Result on the web
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=10584" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=10584</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Design Of Autonomous Algorithmic Models For Time Series Prediction
Original language description
This paper is focused on basic concepts used for processing of high frequency data. The idea of designing of systems for predicting of these time series and its parallel to business proces rules modeling will be mentioned. Designed system will use principles of statististical arbitrage, time series correlation, the use of multivariate variables and characteristics of the distribution of interim data. Newly designed system must meet the condition of econometrics for high frequency data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
STUDENT EEICT 2014
ISBN
978-80-214-4924-4
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
279-283
Publisher name
Brno University of Technology
Place of publication
Brno
Event location
Brno
Event date
Apr 24, 2014
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—