All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multivariate Gaussian Copula in Estimation of Distribution Algorithm with Model Migration

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F14%3APU112086" target="_blank" >RIV/00216305:26230/14:PU112086 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/FOCI.2014.7007815" target="_blank" >http://dx.doi.org/10.1109/FOCI.2014.7007815</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/FOCI.2014.7007815" target="_blank" >10.1109/FOCI.2014.7007815</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multivariate Gaussian Copula in Estimation of Distribution Algorithm with Model Migration

  • Original language description

    The paper presents a new concept of an island-based model of Estimation of Distribution Algorithms (EDAs) with a bidirectional topology in the field of numerical optimization in continuous domain. The traditional migration of individuals is replaced by the probability model migration. Instead of a classical joint probability distribution model, the multivariate Gaussian copula is used which must be specified by correlation coefficients and parameters of a univariate marginal distributions. The idea of the proposed Gaussian Copula EDA algorithm with model migration (GC-mEDA) is to modify the parameters of a resident model respective to each island by the immigrant model of the neighbour island. The performance of the proposed algorithm is tested over a group of five well-known benchmarks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI) Proceedings

  • ISBN

    978-1-4799-4492-7

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    114-119

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    Piscataway

  • Event location

    Orlando

  • Event date

    Dec 9, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000380480600016