Big Data Analysis for Media Production
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F15%3APU117072" target="_blank" >RIV/00216305:26230/15:PU117072 - isvavai.cz</a>
Result on the web
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7350093" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7350093</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JPROC.2015.2496111" target="_blank" >10.1109/JPROC.2015.2496111</a>
Alternative languages
Result language
angličtina
Original language name
Big Data Analysis for Media Production
Original language description
A typical high-end film production generates several terabytes of data per day, either as footage from multiple cameras or as background information regarding the set (laser scans, spherical captures, etc). This paper presents solutions to improve the integration of the multiple data sources, and understand their quality and content, which are useful both to support creative decisions on-set (or near it) and enhance the postproduction process. The main cinema specific contributions, tested on a multisource production dataset made publicly available for research purposes, are the monitoring and quality assurance of multicamera set-ups, multisource registration and acceleration of 3-D reconstruction, anthropocentric visual analysis techniques for semantic content annotation, and integrated 2-D-3-D web visualization tools. We discuss as well improvements carried out in basic techniques for acceleration, clustering and visualization, which were necessary to deal with the very large multisource data, and can be applied to other big data problems in diverse application fields.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/7E13044" target="_blank" >7E13044: IMPART - Intelligent Management Platform for Advanced Real-Time media processes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Communication Letters
ISSN
1089-7798
e-ISSN
1558-2558
Volume of the periodical
2015
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
1-29
UT code for WoS article
000386244000004
EID of the result in the Scopus database
2-s2.0-84949844845