Reducing the Run-time Complexity of Support Vector Machine Used for Rail Candidates Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F15%3APU118626" target="_blank" >RIV/00216305:26230/15:PU118626 - isvavai.cz</a>
Result on the web
<a href="http://www.vedeckekonference.cz/index.php?option=com_content&view=article&id=79&Itemid=66&lang=en" target="_blank" >http://www.vedeckekonference.cz/index.php?option=com_content&view=article&id=79&Itemid=66&lang=en</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Reducing the Run-time Complexity of Support Vector Machine Used for Rail Candidates Detection
Original language description
Support Vector Machine (SVM) is a technique for classification and regression. It uses a decision surface called hyperplane that depends on the regularization parameter and training points lying in the margin of the hyperplane. The run-time complexity of SVM may be reduced through the hyperplane affected by the regularization parameter. We deal with rails recognition in images taken from the camera mounted on the board of the locomotive. For the purpose of rail candidates detection, we deployed an algorithm using SVM. We performed several experiments under different settings. In this paper, we introduce an algorithm using SVM and the impact of its regulation parameter as well as others possible on SVM-performance. The main goal is to decrease time-complexity while maintaining classification success rate.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Masaryk conference for Ph.D. students and young researchers
ISBN
978-80-87952-12-2
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
2138-2146
Publisher name
Akademické sdružení MAGNANIMITAS Assn.
Place of publication
Hradec Králové
Event location
Hradec Králové
Event date
Dec 14, 2015
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—