All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving Multi-view Object Recognition by Detecting Changes in Point Clouds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121600" target="_blank" >RIV/00216305:26230/16:PU121600 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/document/7850045/" target="_blank" >http://ieeexplore.ieee.org/document/7850045/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SSCI.2016.7850045" target="_blank" >10.1109/SSCI.2016.7850045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving Multi-view Object Recognition by Detecting Changes in Point Clouds

  • Original language description

    This paper proposes the use of change detection in a multi-view object recognition system in order to improve its flexibility and effectiveness in dynamic environments. Multi-view recognition approaches are essential to overcome problems related to clutter, occlusion or camera noise, but the existing systems usually assume a static environment. The presence of dynamic objects raises another issue - the inconsistencies introduced to the internal scene model. We show that by incorporating the change detection and correction of the inherent scene inconsistencies, we can reduce false positive detections by 70% in average for moving objects when tested on the publicly available TUW dataset. To reduce time required for verifying a large set of accumulated object pose hypotheses, we further integrate a clustering approach into the original multi-view object recognition system and show that this reduces computation time by approximately 16%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TE01020415" target="_blank" >TE01020415: V3C - Visual Computing Competence Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing

  • ISBN

    978-1-5090-4239-5

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Atény

  • Event location

    Athens

  • Event date

    Dec 6, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000400488301086