Audio Enhancing With DNN Autoencoder For Speaker Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121617" target="_blank" >RIV/00216305:26230/16:PU121617 - isvavai.cz</a>
Result on the web
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11139" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11139</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2016.7472647" target="_blank" >10.1109/ICASSP.2016.7472647</a>
Alternative languages
Result language
angličtina
Original language name
Audio Enhancing With DNN Autoencoder For Speaker Recognition
Original language description
We have presented our approach towards building a robust speaker recognition system. We concentrated on improving the performance on noisy and reverberant data by means of a DNN autoencoder, which is trained to remove both additive noise and reverberation from audio. We showed that our method significantly improves the performance of both state-of-the-art text-dependent and textindependent speaker recognition systems in the domain of distant microphone recordings. We analyzed and discussed the effect of the proposed method both on real-world data as well as on artificially created data. The artificially created data allowed us to measure the effect of enhancing separately for distortions caused by additive noise or reverberation.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/VI20152020025" target="_blank" >VI20152020025: Information mining in speech acquired by distant microphones - DRAPÁK</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 41th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016), 2016
ISBN
978-1-4799-9988-0
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
5090-5094
Publisher name
IEEE Signal Processing Society
Place of publication
Shanghai
Event location
Shanghai
Event date
Mar 20, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000388373405048