Compression Artifacts Removal Using Convolutional Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121637" target="_blank" >RIV/00216305:26230/16:PU121637 - isvavai.cz</a>
Result on the web
<a href="https://dspace5.zcu.cz/handle/11025/21649" target="_blank" >https://dspace5.zcu.cz/handle/11025/21649</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Compression Artifacts Removal Using Convolutional Neural Networks
Original language description
This paper shows that it is possible to train large and deep convolutional neural networks (CNN) for JPEG compression artifacts reduction.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/7H14002" target="_blank" >7H14002: ALMARVI - Algorithms, Design Methods, and Many-Core Execution Platform for Low-Power Massive Data-Rate Video and Image Processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of WSCG
ISSN
1213-6972
e-ISSN
1213-6964
Volume of the periodical
24
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
63-72
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84979080304