On the use of deep feedforward neural networks for automatic language identification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121639" target="_blank" >RIV/00216305:26230/16:PU121639 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S088523081530036X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S088523081530036X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csl.2016.03.001" target="_blank" >10.1016/j.csl.2016.03.001</a>
Alternative languages
Result language
angličtina
Original language name
On the use of deep feedforward neural networks for automatic language identification
Original language description
In this work, we presented an extensive study of the use of deep neural networks for LID. Guided by the success of DNNs for acoustic modelling, we explored their capability to learn discriminative language information from speech signals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTER SPEECH AND LANGUAGE
ISSN
0885-2308
e-ISSN
1095-8363
Volume of the periodical
2016
Issue of the periodical within the volume
40
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
46-59
UT code for WoS article
000378970200003
EID of the result in the Scopus database
2-s2.0-84971260739