All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data selection by sequence summarizing neural network in mismatch condition training

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU122426" target="_blank" >RIV/00216305:26230/16:PU122426 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.semanticscholar.org/paper/Data-Selection-by-Sequence-Summarizing-Neural-Zmol%C3%ADkov%C3%A1-Karafi%C3%A1t/bc1832e8b8d4e5edf987e1562b578bd9aa5e18a9" target="_blank" >https://www.semanticscholar.org/paper/Data-Selection-by-Sequence-Summarizing-Neural-Zmol%C3%ADkov%C3%A1-Karafi%C3%A1t/bc1832e8b8d4e5edf987e1562b578bd9aa5e18a9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2016-741" target="_blank" >10.21437/Interspeech.2016-741</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data selection by sequence summarizing neural network in mismatch condition training

  • Original language description

    Data augmentation is a simple and efficient technique to improve the robustness of a speech recognizer when deployed in mismatched training-test conditions. Our paper proposes a new approach for selecting data with respect to similarity of acoustic conditions. The similarity is computed based on a sequence summarizing neural network which extracts vectors containing acoustic summary (e.g. noise and reverberation characteristics) of an utterance. Several configurations of this network and different methods of selecting data using these "summary-vectors" were explored. The results are reported on a mismatched condition using AMI training set with the proposed data selection and CHiME3 test set.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of Interspeech 2016

  • ISBN

    978-1-5108-3313-5

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    2354-2358

  • Publisher name

    International Speech Communication Association

  • Place of publication

    San Francisco

  • Event location

    San Francisco

  • Event date

    Sep 8, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000409394401175