CNN for license plate motion deblurring
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU122835" target="_blank" >RIV/00216305:26230/16:PU122835 - isvavai.cz</a>
Result on the web
<a href="http://ieeexplore.ieee.org/document/7533077/" target="_blank" >http://ieeexplore.ieee.org/document/7533077/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICIP.2016.7533077" target="_blank" >10.1109/ICIP.2016.7533077</a>
Alternative languages
Result language
angličtina
Original language name
CNN for license plate motion deblurring
Original language description
In this work we explore the previously proposed approach of direct blind deconvolution and denoising with convolutional neural networks (CNN) in a situation where the blur kernels are partially constrained. We focus on blurred images from a real-life traffic surveillance system, on which we, for the first time, demonstrate that neural networks trained on artificial data provide superior reconstruction quality on real images compared to traditional blind deconvolution methods. The training data is easy to obtain by blurring sharp photos from a target system with a very rough approximation of the expected blur kernels, thereby allowing custom CNNs to be trained for a specific application (image content and blur range). Additionally, we evaluate the behavior and limits of the CNNs with respect to blur direction range and length.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/7H14002" target="_blank" >7H14002: ALMARVI - Algorithms, Design Methods, and Many-Core Execution Platform for Low-Power Massive Data-Rate Video and Image Processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IEEE International Conference on Image Processing (ICIP)
ISBN
978-1-4673-9961-6
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
3832-3836
Publisher name
IEEE Signal Processing Society
Place of publication
Phoenix
Event location
Phoenix
Event date
Sep 25, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000390782003167