All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CNN for license plate motion deblurring

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU122835" target="_blank" >RIV/00216305:26230/16:PU122835 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/document/7533077/" target="_blank" >http://ieeexplore.ieee.org/document/7533077/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICIP.2016.7533077" target="_blank" >10.1109/ICIP.2016.7533077</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CNN for license plate motion deblurring

  • Original language description

    In this work we explore the previously proposed approach of direct blind deconvolution and denoising with convolutional neural networks (CNN) in a situation where the blur kernels are partially constrained. We focus on blurred images from a real-life traffic surveillance system, on which we, for the first time, demonstrate that neural networks trained on artificial data provide superior reconstruction quality on real images compared to traditional blind deconvolution methods. The training data is easy to obtain by blurring sharp photos from a target system with a very rough approximation of the expected blur kernels, thereby allowing custom CNNs to be trained for a specific application (image content and blur range). Additionally, we evaluate the behavior and limits of the CNNs with respect to blur direction range and length.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/7H14002" target="_blank" >7H14002: ALMARVI - Algorithms, Design Methods, and Many-Core Execution Platform for Low-Power Massive Data-Rate Video and Image Processing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE International Conference on Image Processing (ICIP)

  • ISBN

    978-1-4673-9961-6

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    3832-3836

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Phoenix

  • Event location

    Phoenix

  • Event date

    Sep 25, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000390782003167