Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU123243" target="_blank" >RIV/00216305:26230/16:PU123243 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-56549-1_6" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-56549-1_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-56549-1_6" target="_blank" >10.1007/978-3-319-56549-1_6</a>
Alternative languages
Result language
angličtina
Original language name
Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks
Original language description
Buffer overflow (BO) attacks are one of the most dangerous threads in the area of network security. Methods for detection of BO attacks basically use two approaches: signature matching against packets' payload versus analysis of packets' headers with the behavioral analysis of the connection's flow. The second approach is intended for detection of BO attacks regardless of packets' content which can be ciphered. In this paper, we propose a technique based on Network Behavioral Anomaly Detection (NBAD) aimed at connectionless network traffic. A similar approach has already been used in related works, but focused on connection-oriented traffic. All principles of connection-oriented NBAD cannot be applied in connectionless anomaly detection. There is designed a set of features describing the behavior of connectionless BO attacks and the tool implemented for their offline extraction from network traffic dumps. Next, we describe experiments performed in the virtual network environment utilizing SIP and TFTP network services exploitation and further data mining experiments employing supervised machine learning (ML) and Naive Bayes classifier. The exploitation of services is performed using network traffic modifications with intention to simulate real network conditions. The experimental results show the proposed approach is capable of distinguishing BO attacks from regular network traffic with high precision and class recall.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Information Security Applications - 17th International Workshop, WISA 2016, Jeju Island, Korea, August 25-27, 2016, Revised Selected Papers
ISBN
978-3-319-56549-1
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
66-78
Publisher name
Springer International Publishing
Place of publication
Jeju Island
Event location
Jeju Island, South Korea
Event date
Aug 25, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000426125100006