All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AppIdent - Tool for Network Application Protocols Identification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APR29229" target="_blank" >RIV/00216305:26230/17:PR29229 - isvavai.cz</a>

  • Result on the web

    <a href="https://pluskal.github.io/AppIdent/" target="_blank" >https://pluskal.github.io/AppIdent/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    AppIdent - Tool for Network Application Protocols Identification

  • Original language description

    Network traffic classification is an absolute necessity for network     monitoring, security analysis, and digital forensics. Without accurate    traffic classification, computation demands on analysis of all IP flows are  enormous. Classification can also reduce the number of flows that need to be analyzed, prioritize, and order them for an investigator to analyze the most forensically significant first. This paper presents an automatic feature elimination method based on a feature correlation matrix. Furthermore, we compare two algorithms adapted from literature, that offer high accuracy and acceptable performance, and our algorithm -- Enhanced Statistical Protocol Identification (ESPI). Each of these algorithms is used with a subset of features that best suits it. We evaluate these algorithms on their ability to identify application layer protocols and additionally applications themselves. Experiments show that the Random Forest based classifier yields the most promising results, whereas our algorithm provides an interesting tradeoff between higher performance and slightly lower accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    R - Software

  • CEP classification

  • OECD FORD branch

    20206 - Computer hardware and architecture

Result continuities

  • Project

    <a href="/en/project/VI20172020062" target="_blank" >VI20172020062: Integrated platform for analysis of digital data from security incidents</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Internal product ID

    AppIdent

  • Technical parameters

    Pro informace o licenčních podmínkách prosím kontaktujte: Mgr. Michaela Burianová, Výzkumné centrum informačních technologií, Fakulta informačních technologií VUT v Brně,  Božetěchova 2, 612 66 Brno, 541 141 470.

  • Economical parameters

    Pro informace o licenčních podmínkách prosím kontaktujte: Mgr. Michaela Burianová, Výzkumné centrum informačních technologií, Fakulta informačních technologií VUT v Brně,  Božetěchova 2, 612 66 Brno, 541 141 470.

  • Owner IČO

  • Owner name

    Fakulta informačních technologií