All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Box Clustering Segmentation: A New Method for Vision-based Page Preprocessing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU122822" target="_blank" >RIV/00216305:26230/17:PU122822 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0306457316301169" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0306457316301169</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ipm.2017.02.002" target="_blank" >10.1016/j.ipm.2017.02.002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Box Clustering Segmentation: A New Method for Vision-based Page Preprocessing

  • Original language description

    This paper presents a novel approach to web page segmentation, which is one of substantial preprocessing steps when mining data from web documents. Most of the current segmentation methods are based on algorithms that work on a tree representation of web pages (DOM tree or a hierarchical rendering model) and produce another tree structure as an output. In contrast, our method uses a rendering engine to get an image of the web page, takes the smallest rendered elements of that image, performs clustering using a custom algorithm and produces a flat set of segments of a given granularity. For the clustering metrics, we use purely visual properties only: the distance of elements and their visual similarity. We experimentally evaluate the properties of our algorithm by processing 2400 web pages. On this set of web pages, we prove that our algorithm is almost 90% faster than the reference algorithm. We also show that our algorithm accuracy is between 47% and 133% of the reference algorithm accuracy with indirect correlation of our algorithms accuracy to the depth of inspected page structure. In our experiments, we also demonstrate the advantages of producing a flat segmentation structure instead of an hierarchy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INFORMATION PROCESSING & MANAGEMENT

  • ISSN

    0306-4573

  • e-ISSN

    1873-5371

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    735-750

  • UT code for WoS article

    000396972300012

  • EID of the result in the Scopus database

    2-s2.0-85013223226