Box Clustering Segmentation: A New Method for Vision-based Page Preprocessing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU122822" target="_blank" >RIV/00216305:26230/17:PU122822 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0306457316301169" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0306457316301169</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ipm.2017.02.002" target="_blank" >10.1016/j.ipm.2017.02.002</a>
Alternative languages
Result language
angličtina
Original language name
Box Clustering Segmentation: A New Method for Vision-based Page Preprocessing
Original language description
This paper presents a novel approach to web page segmentation, which is one of substantial preprocessing steps when mining data from web documents. Most of the current segmentation methods are based on algorithms that work on a tree representation of web pages (DOM tree or a hierarchical rendering model) and produce another tree structure as an output. In contrast, our method uses a rendering engine to get an image of the web page, takes the smallest rendered elements of that image, performs clustering using a custom algorithm and produces a flat set of segments of a given granularity. For the clustering metrics, we use purely visual properties only: the distance of elements and their visual similarity. We experimentally evaluate the properties of our algorithm by processing 2400 web pages. On this set of web pages, we prove that our algorithm is almost 90% faster than the reference algorithm. We also show that our algorithm accuracy is between 47% and 133% of the reference algorithm accuracy with indirect correlation of our algorithms accuracy to the depth of inspected page structure. In our experiments, we also demonstrate the advantages of producing a flat segmentation structure instead of an hierarchy.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INFORMATION PROCESSING & MANAGEMENT
ISSN
0306-4573
e-ISSN
1873-5371
Volume of the periodical
53
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
735-750
UT code for WoS article
000396972300012
EID of the result in the Scopus database
2-s2.0-85013223226