Evolutionary Approximation of Gradient Orientation Module in HOG-based Human Detection System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126415" target="_blank" >RIV/00216305:26230/17:PU126415 - isvavai.cz</a>
Result on the web
<a href="https://www.fit.vut.cz/research/publication/11441/" target="_blank" >https://www.fit.vut.cz/research/publication/11441/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/GlobalSIP.2017.8309171" target="_blank" >10.1109/GlobalSIP.2017.8309171</a>
Alternative languages
Result language
angličtina
Original language name
Evolutionary Approximation of Gradient Orientation Module in HOG-based Human Detection System
Original language description
The histogram of oriented gradients (HOG) feature extraction is a computer vision method widely used in embedded systems for detection of objects such as pedestrians. We used Cartesian genetic programming (CGP) to exploit the error resilience in the HOG algorithm. We evolved new approximate implementations of the arctan function, which is typically employed to compute the gradient orientations. When the best evolved approximations are integrated into the SW implementation of the HOG algorithm, not only the execution time, but also the classification accuracy was improved in comparison with the accurate implementation and the state-of-the-art approximate implementations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2017 IEEE Global Conference on Signal and Information Processing GlobalSIP 2017
ISBN
978-1-5090-5989-8
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
1300-1304
Publisher name
IEEE Signal Processing Society
Place of publication
Montreal
Event location
Montreal, Kanada
Event date
Nov 14, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000450053100257