Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126440" target="_blank" >RIV/00216305:26230/17:PU126440 - isvavai.cz</a>
Result on the web
<a href="http://ieeexplore.ieee.org/abstract/document/8078501/" target="_blank" >http://ieeexplore.ieee.org/abstract/document/8078501/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/AVSS.2017.8078501" target="_blank" >10.1109/AVSS.2017.8078501</a>
Alternative languages
Result language
angličtina
Original language name
Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data
Original language description
This work is focused on recognition of license plates in low resolution and low quality images. We present a methodology for collection of real world (non-synthetic) dataset of low quality license plate images with ground truth transcriptions. Our approach to the license plate recognition is based on a Convolutional Neural Network which holistically processes the whole image, avoiding segmentation of the license plate characters. Evaluation results on multiple datasets show that our method significantly outperforms other free and commercial solutions to license plate recognition on the low quality data. To enable further research of low quality license plate recognition, we make the datasets publicly available.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Workshop on Traffic and Street Surveillance for Safety and Security (AVSS 2017)
ISBN
978-1-5386-2939-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE Computer Society
Place of publication
Lecce
Event location
Lecce
Event date
Aug 28, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000426203700043