All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multilingually Trained Bottleneck Features in Spoken Language Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126448" target="_blank" >RIV/00216305:26230/17:PU126448 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0885230816302947" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0885230816302947</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csl.2017.06.008" target="_blank" >10.1016/j.csl.2017.06.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multilingually Trained Bottleneck Features in Spoken Language Recognition

  • Original language description

    Multilingual training of neural networks has proven to be simple yet effective way to deal with multilingual training corpora. It allows to use several resources to jointly train a language independent representation of features, which can be encoded into low-dimensional feature set by embedding narrow bottleneck layer to the network. In this paper, we analyze such features on the task of spoken language recognition (SLR), focusing on practical aspects of training bottleneck networks and analyzing their integration in SLR. By comparing properties of mono and multilingual features we show the suitability of multilingual training for SLR. The state-of-the-art performance of these features is demonstrated on the NIST LRE09 database.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMPUTER SPEECH AND LANGUAGE

  • ISSN

    0885-2308

  • e-ISSN

    1095-8363

  • Volume of the periodical

    2017

  • Issue of the periodical within the volume

    46

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    252-267

  • UT code for WoS article

    000407609600015

  • EID of the result in the Scopus database

    2-s2.0-85023638945