All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

String constraints with concatenation and transducers solved efficiently

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU126544" target="_blank" >RIV/00216305:26230/18:PU126544 - isvavai.cz</a>

  • Result on the web

    <a href="http://doi.acm.org/10.1145/3158092" target="_blank" >http://doi.acm.org/10.1145/3158092</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3158092" target="_blank" >10.1145/3158092</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    String constraints with concatenation and transducers solved efficiently

  • Original language description

    String analysis is the problem of reasoning about how strings are manipulated by a program. It has numerous applications including automatic detection of cross-site scripting, and automatic test-case generation. A popular string analysis technique includes symbolic executions, which at their core use constraint solvers over the string domain, a.k.a. string solvers. Such solvers typically reason about constraints expressed in theories over strings with the concatenation operator as an atomic constraint. In recent years, researchers started to recognise the importance of incorporating the replace-all operator (i.e. replace all occurrences of a string by another string) and, more generally, finite-state transductions in the theories of strings with concatenation. Such string operations are typically crucial for reasoning about XSS vulnerabilities in web applications, especially for modelling sanitisation functions and implicit browser transductions (e.g. innerHTML). Although this results in an undecidable theory in general, it was recently shown that the straight-line fragment of the theory is decidable, and is sufficiently expressive in practice. In this paper, we provide the first string solver that can reason about constraints involving both concatenation and finite-state transductions. Moreover, it has a completeness and termination guarantee for several important fragments (e.g. straight-line fragment). The main challenge addressed in the paper is the prohibitive worst-case complexity of the theory (double-exponential time), which is exponentially harder than the case without finite-state transductions. To this end, we propose a  method that exploits succinct alternating finite-state automata as concise symbolic representations of string constraints. In contrast to previous approaches using nondeterministic automata, alternation offers not only exponential savings in space when representing Boolean combinations of transducers, but also a p

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the ACM on Programming Languages

  • ISSN

    2475-1421

  • e-ISSN

  • Volume of the periodical

    2

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    96-127

  • UT code for WoS article

    000688016900004

  • EID of the result in the Scopus database

    2-s2.0-85120114692