DNN Based Embeddings for Language Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130737" target="_blank" >RIV/00216305:26230/18:PU130737 - isvavai.cz</a>
Result on the web
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11723" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11723</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2018.8462403" target="_blank" >10.1109/ICASSP.2018.8462403</a>
Alternative languages
Result language
angličtina
Original language name
DNN Based Embeddings for Language Recognition
Original language description
In this work, we present a language identification (LID) system based on embeddings. In our case, an embedding is a fixed-length vector (similar to i-vector) that represents the whole utterance, but unlike i-vector it is designed to contain mostly information relevant to the target task (LID). In order to obtain these embeddings, we train a deep neural network (DNN) with sequence summarization layer to classify languages. In particular, we trained a DNN based on bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) layers, whose frame-by-frame outputs are summarized into mean and standard deviation statistics. After this pooling layer, we add two fully connected layers whose outputs correspond to embeddings. Finally, we add a softmax output layer and train the whole network with multi-class cross-entropy objective to discriminate between languages. We report our results on NIST LRE 2015 and we compare the performance of embeddings and corresponding i-vectors both modeled by Gaussian Linear Classifier (GLC). Using only embeddings resulted in comparable performance to i-vectors and by performing score-level fusion we achieved 7.3% relative improvement over the baseline.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of ICASSP 2018
ISBN
978-1-5386-4658-8
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
5184-5188
Publisher name
IEEE Signal Processing Society
Place of publication
Calgary
Event location
Calgary
Event date
Apr 15, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000446384605071