Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130769" target="_blank" >RIV/00216305:26230/18:PU130769 - isvavai.cz</a>
Result on the web
<a href="https://www.fit.vut.cz/research/publication/11790/" target="_blank" >https://www.fit.vut.cz/research/publication/11790/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Odyssey.2018-49" target="_blank" >10.21437/Odyssey.2018-49</a>
Alternative languages
Result language
angličtina
Original language name
Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model
Original language description
Embeddings in machine learning are low-dimensional representations of complex input patterns, with the property that simple geometric operations like Euclidean distances and dot products can be used for classification and comparison tasks. We introduce meta-embeddings, which live in more general inner product spaces and which are designed to better propagate uncertainty through the embedding bottleneck. Traditional embeddings are trained to maximize between-class and minimize within-class distances. Meta-embeddings are trained to maximize relevant information throughput. As a proof of concept in speaker recognition, we derive an extractor from the familiar generative Gaussian PLDA model (GPLDA). We show that GPLDA likelihood ratio scores are given by Hilbert space inner products between Gaussian likelihood functions, which we term Gaussian meta-embeddings (GMEs). Meta-embedding extractors can be generatively or discriminatively trained. GMEs extracted by GPLDA have fixed precisions and do not propagate uncertainty. We show that a generalization to heavy-tailed PLDA gives GMEs with variable precisions, which do propagate uncertainty. Experiments on NIST SRE 2010 and 2016 show that the proposed method applied to i-vectors without length normalization is up to 20% more accurate than GPLDA applied to length-normalized i-vectors.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Odyssey 2018
ISBN
—
ISSN
2312-2846
e-ISSN
—
Number of pages
8
Pages from-to
349-356
Publisher name
International Speech Communication Association
Place of publication
Les Sables d'Olonne
Event location
Les Sables d'Olonne, France
Event date
Jun 26, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—