All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Speaker Verification Using End-To-End Adversarial Language Adaptation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132986" target="_blank" >RIV/00216305:26230/19:PU132986 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/abstract/document/8683616" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8683616</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Speaker Verification Using End-To-End Adversarial Language Adaptation

  • Original language description

    In this paper we investigate the use of adversarial domain adaptation for addressing the problem of language mismatch between speaker recognition corpora. In the context of speaker verification, adversarial domain adaptation methods aim at minimizing certain divergences between the distribution that the utterance-level features follow (i.e. speaker embeddings) when drawn from source and target domains (i.e. languages), while preserving their capacity in recognizing speakers. Neural architectures for extracting utterancelevel representations enable us to apply adversarial adaptation methods in an end-to-end fashion and train the network jointly with the standard cross-entropy loss. We examine several configurations, such as the use of (pseudo-)labels on the target domain as well as domain labels in the feature extractor, and we demonstrate the effectiveness of our method on the challenging NIST SRE16 and SRE18 benchmarks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ17-23870Y" target="_blank" >GJ17-23870Y: Improving Robustnes in Automatic Speaker Recognition</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of ICASSP 2019

  • ISBN

    978-1-5386-4658-8

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    6006-6010

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Brighton

  • Event location

    Brighton

  • Event date

    May 12, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000482554006047