All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134174" target="_blank" >RIV/00216305:26230/19:PU134174 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2224.pdf" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2224.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2019-2224" target="_blank" >10.21437/Interspeech.2019-2224</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery

  • Original language description

    This work tackles the problem of learning a set of language specific acoustic units from unlabeled speech recordings given a set of labeled recordings from other languages. Our approach may be described by the following two steps procedure: first the model learns the notion of acoustic units from the labelled data and then the model uses its knowledge to find new acoustic units on the target language. We implement this process with the Bayesian Subspace Hidden Markov Model (SHMM), a model akin to the Subspace Gaussian Mixture Model (SGMM) where each low dimensional embedding represents an acoustic unit rather than just a HMMs state. The subspace is trained on 3 languages from the GlobalPhone corpus (German, Polish and Spanish) and the AUs are discovered on the TIMIT corpus. Results, measured in equivalent Phone Error Rate, show that this approach significantly outperforms previous HMM based acoustic units discovery systems and compares favorably with the Variational Auto Encoder-HMM.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of Interspeech 2019

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    261-265

  • Publisher name

    International Speech Communication Association

  • Place of publication

    Graz

  • Event location

    INTERSPEECH 2019

  • Event date

    Sep 15, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000831796400053