All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134189" target="_blank" >RIV/00216305:26230/19:PU134189 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8683422" target="_blank" >https://ieeexplore.ieee.org/document/8683422</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2019.8683422" target="_blank" >10.1109/ICASSP.2019.8683422</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning

  • Original language description

    For real-world speech recognition applications, noise robustness is still a challenge. In this work, we adopt the teacherstudent (T/S) learning technique using a parallel clean and noisy corpus for improving automatic speech recognition (ASR) performance under multimedia noise. On top of that, we apply a logits selection method which only preserves the k highest values to prevent wrong emphasis of knowledge from the teacher and to reduce bandwidth needed for transferring data. We incorporate up to 8000 hours of untranscribed data for training and present our results on sequence trained models apart from cross entropy trained ones. The best sequence trained student model yields relative word error rate (WER) reductions of approximately 10.1%, 28.7% and 19.6% on our clean, simulated noisy and real test sets respectively comparing to a sequence trained teacher.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of ICASSP

  • ISBN

    978-1-5386-4658-8

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    6475-6479

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Brighton

  • Event location

    Brighton

  • Event date

    May 12, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000482554006141