All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

TS-Net: OCR Trained to Switch Between Text Transcription Styles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU139693" target="_blank" >RIV/00216305:26230/21:PU139693 - isvavai.cz</a>

  • Result on the web

    <a href="https://pero.fit.vutbr.cz/publications" target="_blank" >https://pero.fit.vutbr.cz/publications</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86337-1_32" target="_blank" >10.1007/978-3-030-86337-1_32</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    TS-Net: OCR Trained to Switch Between Text Transcription Styles

  • Original language description

    Multiple transcribers produce transcriptions in inconsistent transcription styles.  This presents a problem for training consistent neural network systems for text recognition. We propose Transcription Style Block (TSB) which can learn to switch between multiple transcription styles without any explicit knowledge about the transcription rules. TSB is an adaptive instance normalization conditioned by transcription style identifiers e.g. document numbers or transcriber names and it can be added near the end of any standard text recognition network.  We show that TSB is robust towards the number and complexity of transcription styles and does not degrade the text recognition performance. With time and data efficient adaptation to a new transcription style, we achieved up to 77% relative test character error reduction in comparison to a network without the TSB. 

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/DG18P02OVV055" target="_blank" >DG18P02OVV055: Advanced content extraction and recognition for printed and handwritten documents for better accessibility and usability</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021

  • ISBN

    978-3-030-86336-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    478-493

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Lausanne

  • Event location

    Lausanne, Switzerland

  • Event date

    Sep 5, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000711880100032