All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142899" target="_blank" >RIV/00216305:26230/21:PU142899 - isvavai.cz</a>

  • Result on the web

    <a href="https://pero.fit.vutbr.cz/publications" target="_blank" >https://pero.fit.vutbr.cz/publications</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86337-1_31" target="_blank" >10.1007/978-3-030-86337-1_31</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions

  • Original language description

    This paper addresses text recognition for domains with limited manual annotations by a simple self-training strategy. Our approach should reduce human annotation effort when target domain data is plentiful, such as when transcribing a collection of single person's correspondence or a large manuscript. We propose to train a seed system on large scale data from related domains mixed with available annotated data from the target domain. The seed system transcribes the unannotated data from the target domain which is then used to train a better system. We study several confidence measures and eventually decide to use the posterior probability of a transcription for data selection. Additionally, we propose to augment the data using an aggressive masking scheme. By self-training, we achieve up to 55 % reduction in character error rate for handwritten data and up to 38 % on printed data. The masking augmentation itself reduces the error rate by about 10 % and its effect is better pronounced in case of difficult handwritten data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021

  • ISBN

    978-3-030-86336-4

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    463-477

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Lausanne

  • Event location

    Lausanne, Switzerland

  • Event date

    Sep 5, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000711880100031