AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142899" target="_blank" >RIV/00216305:26230/21:PU142899 - isvavai.cz</a>
Result on the web
<a href="https://pero.fit.vutbr.cz/publications" target="_blank" >https://pero.fit.vutbr.cz/publications</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-86337-1_31" target="_blank" >10.1007/978-3-030-86337-1_31</a>
Alternative languages
Result language
angličtina
Original language name
AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions
Original language description
This paper addresses text recognition for domains with limited manual annotations by a simple self-training strategy. Our approach should reduce human annotation effort when target domain data is plentiful, such as when transcribing a collection of single person's correspondence or a large manuscript. We propose to train a seed system on large scale data from related domains mixed with available annotated data from the target domain. The seed system transcribes the unannotated data from the target domain which is then used to train a better system. We study several confidence measures and eventually decide to use the posterior probability of a transcription for data selection. Additionally, we propose to augment the data using an aggressive masking scheme. By self-training, we achieve up to 55 % reduction in character error rate for handwritten data and up to 38 % on printed data. The masking augmentation itself reduces the error rate by about 10 % and its effect is better pronounced in case of difficult handwritten data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021
ISBN
978-3-030-86336-4
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
463-477
Publisher name
Springer Nature Switzerland AG
Place of publication
Lausanne
Event location
Lausanne, Switzerland
Event date
Sep 5, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000711880100031