The IWSLT 2021 BUT Speech Translation Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU144029" target="_blank" >RIV/00216305:26230/21:PU144029 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.iwslt-1.7.pdf" target="_blank" >https://aclanthology.org/2021.iwslt-1.7.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.iwslt-1.7" target="_blank" >10.18653/v1/2021.iwslt-1.7</a>
Alternative languages
Result language
angličtina
Original language name
The IWSLT 2021 BUT Speech Translation Systems
Original language description
The paper describes BUTs English to German offline speech translation (ST) systems developed for IWSLT2021. They are based on jointly trained Automatic Speech Recognition- Machine Translation models. Their performances is evaluated on MustC-Common test set. In this work, we study their efficiency from the perspective of having a large amount of separate ASR training data and MT training data, and a smaller amount of speechtranslation training data. Large amounts of ASR and MT training data are utilized for pretraining the ASR and MT models. Speechtranslation data is used to jointly optimize ASR-MT models by defining an end-to-end differentiable path from speech to translations. For this purpose, we use the internal continuous representations from the ASR-decoder as the input to MT module. We show that speech translation can be further improved by training the ASR-decoder jointly with the MT-module using large amount of text-only MT training data. We also show significant improvements by training an ASR module capable of generating punctuated text, rather than leaving the punctuation task to the MT module.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 18th International Conference on Spoken Language Translation (IWSLT)
ISBN
978-1-7138-3378-9
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
75-83
Publisher name
Association for Computational Linguistics
Place of publication
Bangkok, on-line
Event location
Bangkok (on-line)
Event date
Aug 5, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000694723100007