CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU143327" target="_blank" >RIV/00216305:26230/22:PU143327 - isvavai.cz</a>
Result on the web
<a href="https://openaccess.thecvf.com/content/WACV2022/html/Tomesek_CrossLocate_Cross-Modal_Large-Scale_Visual_Geo-Localization_in_Natural_Environments_Using_Rendered_WACV_2022_paper.html" target="_blank" >https://openaccess.thecvf.com/content/WACV2022/html/Tomesek_CrossLocate_Cross-Modal_Large-Scale_Visual_Geo-Localization_in_Natural_Environments_Using_Rendered_WACV_2022_paper.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV51458.2022.00225" target="_blank" >10.1109/WACV51458.2022.00225</a>
Alternative languages
Result language
angličtina
Original language name
CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities
Original language description
We propose a novel approach to visual geo-localization in natural environments. This is a challenging problem due to vast localization areas, the variable appearance of outdoor environments and the scarcity of available data. In order to make the research of new approaches possible, we first create two databases containing "synthetic" images of various modalities. These image modalities are rendered from a 3D terrain model and include semantic segmentations, silhouette maps and depth maps. By combining the rendered database views with existing datasets of photographs (used as "queries" to be localized), we create a unique benchmark for visual geo-localization in natural environments, which contains correspondences between query photographs and rendered database imagery. The distinct ability to match photographs to synthetically rendered databases defines our task as "cross-modal". On top of this benchmark, we provide thorough ablation studies analysing the localization potential of the database image modalities. We reveal the depth information as the best choice for outdoor localization. Finally, based on our observations, we carefully develop a fully-automatic method for large-scale cross-modal localization using image retrieval. We demonstrate its localization performance outdoors in the entire state of Switzerland. Our method reveals a large gap between operating within a single image domain (e.g. photographs) and working across domains (e.g. photographs matched to rendered images), as gained knowledge is not transferable between the two. Moreover, we show that modern localization methods fail when applied to such a cross-modal task and that our method achieves significantly better results than state-of-the-art approaches. The datasets, code and trained models are available on the project website: http://cphoto.fit.vutbr.cz/crosslocate/.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LTAIZ19004" target="_blank" >LTAIZ19004: Deep-Learning Approach to Topographical Image Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-1-6654-0477-8
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
3174-3183
Publisher name
Institute of Electrical and Electronics Engineers
Place of publication
Waikoloa
Event location
Waikoloa, Hawaii
Event date
Jan 4, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—