All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Two-Step Approach to Leverage Contextual Data: Speech Recognition in Air-Traffic Communications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144938" target="_blank" >RIV/00216305:26230/22:PU144938 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9746563" target="_blank" >https://ieeexplore.ieee.org/document/9746563</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP43922.2022.9746563" target="_blank" >10.1109/ICASSP43922.2022.9746563</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Two-Step Approach to Leverage Contextual Data: Speech Recognition in Air-Traffic Communications

  • Original language description

    Automatic Speech Recognition (ASR), as the assistance of speech communication between pilots and air-traffic controllers, can significantly reduce the complexity of the task and increase the reliability of transmitted information. ASR application can lead to a lower number of incidents caused by misunderstanding and improve air traffic management (ATM) efficiency. Evidently, high accuracy predictions, especially, of key information, i.e., callsigns and commands, are required to minimize the risk of errors. We prove that combining the benefits of ASR and Natural Language Processing (NLP) methods to make use of surveillance data (i.e. additional modality) helps to considerably improve the recognition of callsigns (named entity). In this paper, we investigate a two-step callsign boosting approach: (1) at the 1st step (ASR), weights of probable callsign n-grams are reduced in G.fst and/or in the decoding FST (lattices), (2) at the 2nd step (NLP), callsigns extracted from the improved recognition outputs with Named Entity Recognition (NER) are correlated with the surveillance data to select the most suitable one. Boosting callsign n-grams with the combination of ASR and NLP methods eventually leads up to 53.7% of an absolute, or 60.4% of a relative, improvement in callsign recognition.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  • ISBN

    978-1-6654-0540-9

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    6282-6286

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Singapore

  • Event location

    Singapore

  • Event date

    May 22, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000864187906114