All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Approximation in Non-Local Means Image Filters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU145930" target="_blank" >RIV/00216305:26230/22:PU145930 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/SMC53654.2022.9945091" target="_blank" >http://dx.doi.org/10.1109/SMC53654.2022.9945091</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SMC53654.2022.9945091" target="_blank" >10.1109/SMC53654.2022.9945091</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Approximation in Non-Local Means Image Filters

  • Original language description

    The non-local means image filter is a non-trivial denoising algorithm for color images utilizing floating-point arithmetic operations in its reference software implementation. In order to simplify this algorithm for an on-chip implementation, we investigate the impact of various number representations and approximate arithmetic operators on the quality of image filtering. We employ Cartesian Genetic Programming (CGP) to evolve approximate implementations of a 20-bit signed multiplier which is then applied in the image filter instead of the conventional 32-bit floating-point multiplier. In addition to using several techniques that reduce the huge design cost, we propose a new mutation operator for CGP to improve the search quality and obtain better approximate multipliers than with CGP utilizing the standard mutation operator. Image filters utilizing evolved approximate multipliers can save 35% in power consumption of multiplication operations for a negligible drop in the image filtering quality.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

  • ISBN

    978-1-6654-5258-8

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    2759-2766

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    Praha

  • Event location

    Praha

  • Event date

    Oct 9, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article