All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learnable Sparse Filterbank for Speaker Verification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146107" target="_blank" >RIV/00216305:26230/22:PU146107 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.isca-speech.org/archive/pdfs/interspeech_2022/peng22e_interspeech.pdf" target="_blank" >https://www.isca-speech.org/archive/pdfs/interspeech_2022/peng22e_interspeech.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2022-11309" target="_blank" >10.21437/Interspeech.2022-11309</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learnable Sparse Filterbank for Speaker Verification

  • Original language description

    Recently, feature extraction with learnable filters was extensively investigated with speaker verification systems, with filters learned both in time- and frequency-domains. Most of the learned schemes however end up with filters close to their initialization (e.g. Mel filterbank) or filters strongly limited by their constraints. In this paper, we propose a novel learnable sparse filterbank, named LearnSF, by exclusively optimizing the sparsity of the filterbank, that does not explicitly constrain the filters to follow pre-defined distribution. After standard pre-processing (STFT and square of the magnitude spectrum), the learnable sparse filterbank is employed, with its normalized outputs fed into a neural network predicting the speaker identity. We evaluated the performance of the proposed approach on both VoxCeleb and CNCeleb datasets. The experimental results demonstrate the effectiveness of the proposed LearnSF compared to both widely-used acoustic features and existing parameterized learnable front-ends.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    5110-5114

  • Publisher name

    International Speech Communication Association

  • Place of publication

    Incheon

  • Event location

    Incheon Korea

  • Event date

    Sep 18, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article