Revisiting joint decoding based multi-talker speech recognition with DNN acoustic model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146108" target="_blank" >RIV/00216305:26230/22:PU146108 - isvavai.cz</a>
Result on the web
<a href="https://www.isca-speech.org/archive/pdfs/interspeech_2022/kocour22_interspeech.pdf" target="_blank" >https://www.isca-speech.org/archive/pdfs/interspeech_2022/kocour22_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2022-10406" target="_blank" >10.21437/Interspeech.2022-10406</a>
Alternative languages
Result language
angličtina
Original language name
Revisiting joint decoding based multi-talker speech recognition with DNN acoustic model
Original language description
In typical multi-talker speech recognition systems, a neural network-based acoustic model predicts senone state posteriors for each speaker. These are later used by a single-talker decoder which is applied on each speaker-specific output stream separately. In this work, we argue that such a scheme is sub-optimal and propose a principled solution that decodes all speakers jointly. We modify the acoustic model to predict joint state posteriors for all speakers, enabling the network to express uncertainty about the attribution of parts of the speech signal to the speakers. We employ a joint decoder that can make use of this uncertainty together with higher-level language information. For this, we revisit decoding algorithms used in factorial generative models in early multi-talker speech recognition systems. In contrast with these early works, we replace the GMM acoustic model with DNN, which provides greater modeling power and simplifies part of the inference. We demonstrate the advantage of joint decoding in proof of concept experiments on a mixed-TIDIGITS dataset.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LTAIN19087" target="_blank" >LTAIN19087: Multi-linguality in speech technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
1990-9772
e-ISSN
—
Number of pages
5
Pages from-to
4955-4959
Publisher name
International Speech Communication Association
Place of publication
Incheon
Event location
Incheon Korea
Event date
Sep 18, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—