Black-box Audit of YouTube's Video Recommendation: Investigation of Misinformation Filter Bubble Dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146535" target="_blank" >RIV/00216305:26230/22:PU146535 - isvavai.cz</a>
Result on the web
<a href="https://www.ijcai.org/proceedings/2022/749" target="_blank" >https://www.ijcai.org/proceedings/2022/749</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2022/749" target="_blank" >10.24963/ijcai.2022/749</a>
Alternative languages
Result language
angličtina
Original language name
Black-box Audit of YouTube's Video Recommendation: Investigation of Misinformation Filter Bubble Dynamics
Original language description
We investigated the creation and bursting dynamics of misinformation filter bubbles on YouTube using a black-box sockpuppeting audit technique. In this study, pre-programmed agents acting as YouTube users stimulated YouTube's recommender systems: they first watched a series of misinformation promoting videos (bubble creation) and then a series of misinformation debunking videos (bubble bursting). Meanwhile, agents recorded videos recommended to them by YouTube. After manually annotating these recommendations, we were able to quantify the portion of misinformative videos among them. The results confirm the creation of filter bubbles (albeit not in all situations) and show that these bubbles can be bursted by watching credible content. Drawing a direct comparison with a previous study, we do not see improvements in overall quantities of misinformation recommended.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Sister Conferences Best Papers
ISBN
9781956792003
ISSN
1045-0823
e-ISSN
—
Number of pages
5
Pages from-to
5349-5353
Publisher name
International Joint Conferences on Artificial Intelligence
Place of publication
Vienna
Event location
Vienna
Event date
Jul 23, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—