All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU149353" target="_blank" >RIV/00216305:26230/22:PU149353 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2022.case-1.10/" target="_blank" >https://aclanthology.org/2022.case-1.10/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.case-1.10" target="_blank" >10.18653/v1/2022.case-1.10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model

  • Original language description

    In this paper, we describe our shared task submissions for Subtask 2 in CASE-2022, Event Causality Identification with Casual News Corpus. The challenge focused on the automatic detection of all cause-effect-signal spans present in the sentence from news-media. We detect cause-effect-signal spans in a sentence using T5 --- a pre-trained autoregressive language model. We iteratively identify all cause-effect-signal span triplets, always conditioning the prediction of the next triplet on the previously predicted ones. To predict the triplet itself, we consider different causal relationships such as cause->effect->signal. Each triplet component is generated via a language model conditioned on the sentence, the previous parts of the current triplet, and previously predicted triplets. Despite training on an extremely small dataset of 160 samples, our approach achieved competitive performance, being placed second in the competition. Furthermore, we show that assuming either cause->effect or effect->cause order achieves similar results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022)

  • ISBN

    978-1-959429-05-0

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    70-78

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Abu Dhabi

  • Event location

    Abu Dhabi

  • Event date

    Dec 7, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article