Taylor Series Method in Numerical Integration: Linear and Nonlinear problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149344" target="_blank" >RIV/00216305:26230/23:PU149344 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/Informatics57926.2022.10083462" target="_blank" >http://dx.doi.org/10.1109/Informatics57926.2022.10083462</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Informatics57926.2022.10083462" target="_blank" >10.1109/Informatics57926.2022.10083462</a>
Alternative languages
Result language
angličtina
Original language name
Taylor Series Method in Numerical Integration: Linear and Nonlinear problems
Original language description
This article deals with the high order integration method based on the Taylor series. The paper shows positive properties of the Modern Taylor Series Method on a set of technical initial value problems. These problems can be transformed into the autonomous systems of ordinary differential equations for both linear and nonlinear problems, and the solution can be effectively parallelized. The numerical solution is analyzed and compared with the state-of-the-art solvers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2022 IEEE 16th International Scientific Conference on Informatics, Informatics 2022 - Proceedings
ISBN
979-8-3503-1034-4
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
239-244
Publisher name
IEEE Communications Society
Place of publication
Poprad
Event location
Poprad
Event date
Nov 23, 2022
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—