Towards Writing Style Adaptation in Handwriting Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149377" target="_blank" >RIV/00216305:26230/23:PU149377 - isvavai.cz</a>
Result on the web
<a href="https://pero.fit.vutbr.cz/publications" target="_blank" >https://pero.fit.vutbr.cz/publications</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-41685-9_24" target="_blank" >10.1007/978-3-031-41685-9_24</a>
Alternative languages
Result language
angličtina
Original language name
Towards Writing Style Adaptation in Handwriting Recognition
Original language description
One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple finetuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Document Analysis and Recognition - ICDAR 2023
ISBN
978-3-031-41684-2
ISSN
0302-9743
e-ISSN
—
Number of pages
18
Pages from-to
377-394
Publisher name
Springer Nature Switzerland AG
Place of publication
San José
Event location
San José, California, USA
Event date
Aug 21, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—