All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Writing Style Adaptation in Handwriting Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149377" target="_blank" >RIV/00216305:26230/23:PU149377 - isvavai.cz</a>

  • Result on the web

    <a href="https://pero.fit.vutbr.cz/publications" target="_blank" >https://pero.fit.vutbr.cz/publications</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-41685-9_24" target="_blank" >10.1007/978-3-031-41685-9_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Writing Style Adaptation in Handwriting Recognition

  • Original language description

    One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple finetuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Document Analysis and Recognition - ICDAR 2023

  • ISBN

    978-3-031-41684-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

    377-394

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    San José

  • Event location

    San José, California, USA

  • Event date

    Aug 21, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article