General Boolean Function Benchmark Suite
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149398" target="_blank" >RIV/00216305:26230/23:PU149398 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1145/3594805.3607131" target="_blank" >http://dx.doi.org/10.1145/3594805.3607131</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3594805.3607131" target="_blank" >10.1145/3594805.3607131</a>
Alternative languages
Result language
angličtina
Original language name
General Boolean Function Benchmark Suite
Original language description
Just over a decade ago, the first comprehensive review on the state of benchmarking in Genetic Programming (GP) analyzed the mismatch between the problems that are used to test the performance of GP systems and real-world problems. Since then, several benchmark suites in major GP problem domains have been proposed over time, filling some of the major gaps. In the framework of the first review about the state of benchmarking in GP, logic synthesis (LS) was classified as one of the major GP problem domains. However, a diverse and accessible benchmark suite for LS is still missing. In this work, we propose a benchmark suite for LS that covers different types of Boolean functions that are commonly used in the field of GP. We analyze the complexity of the proposed benchmark by using popular complexity measures that are commonly used to classify and characterize Boolean functions and digital circuits.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
FOGA 2023 - Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms
ISBN
979-8-4007-0202-0
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
84-95
Publisher name
Association for Computing Machinery
Place of publication
Potsdam
Event location
Postdam
Event date
Aug 30, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—