Search and Explore: Symbiotic Policy Synthesis in POMDPs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149417" target="_blank" >RIV/00216305:26230/23:PU149417 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-37709-9_6" target="_blank" >http://dx.doi.org/10.1007/978-3-031-37709-9_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-37709-9_6" target="_blank" >10.1007/978-3-031-37709-9_6</a>
Alternative languages
Result language
angličtina
Original language name
Search and Explore: Symbiotic Policy Synthesis in POMDPs
Original language description
This paper marries two state-of-the-art controller synthesis methods for partially observable Markov decision processes (POMDPs), a prominent model in sequential decision making under uncertainty. A central issue is to find a POMDP controller - that solely decides based on the observations seen so far - to achieve a total expected reward objective. As finding optimal controllers is undecidable, we concentrate on synthesising good finite-state controllers (FSCs). We do so by tightly integrating two modern, orthogonal methods for POMDP controller synthesis: a belief-based and an inductive approach. The former method obtains an FSC from a finite fragment of the so-called belief MDP, an MDP that keeps track of the probabilities of equally observable POMDP states. The latter is an inductive search technique over a set of FSCs, e.g., controllers with a fixed memory size. The key result of this paper is a symbiotic anytime algorithm that tightly integrates both approaches such that each profits from the controllers constructed by the other. Experimental results indicate a substantial improvement in the value of the controllers while significantly reducing the synthesis time and memory footprint.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA23-06963S" target="_blank" >GA23-06963S: VESCAA: Verifiable and Efficient Synthesis of Controllers for Autonomous Agents</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Aided Verification
ISBN
978-3-031-37708-2
ISSN
—
e-ISSN
—
Number of pages
23
Pages from-to
113-135
Publisher name
Springer Verlag
Place of publication
Cham
Event location
Paříž
Event date
Jul 17, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—