Toroidal Probabilistic Spherical Discriminant Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149426" target="_blank" >RIV/00216305:26230/23:PU149426 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10095580" target="_blank" >https://ieeexplore.ieee.org/document/10095580</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP49357.2023.10095580" target="_blank" >10.1109/ICASSP49357.2023.10095580</a>
Alternative languages
Result language
angličtina
Original language name
Toroidal Probabilistic Spherical Discriminant Analysis
Original language description
n speaker recognition, where speech segments are mapped to embeddings on the unit hypersphere, two scoring back-ends are commonly used, namely cosine scoring and PLDA. We have recently proposed PSDA, an analog to PLDA that uses Von Mises-Fisher distributions instead of Gaussians. In this paper, we present toroidal PSDA (T-PSDA). It extends PSDA with the ability to model within and between-speaker variabilities in toroidal submanifolds of the hypersphere. Like PLDA and PSDA, the model allows closed-form scoring and closed-form EM updates for training. On VoxCeleb, we find T-PSDA accu- racy on par with cosine scoring, while PLDA accuracy is infe- rior. On NIST SRE'21 we find that T-PSDA gives large accu- racy gains compared to both cosine scoring and PLDA.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of ICASSP 2023
ISBN
978-1-7281-6327-7
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
1-5
Publisher name
IEEE Signal Processing Society
Place of publication
Rhodes Island
Event location
Rhodes Island, Greece
Event date
Jun 4, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—