All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hardware-Aware Evolutionary Approaches to Deep Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149510" target="_blank" >RIV/00216305:26230/23:PU149510 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-981-99-3814-8_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-99-3814-8_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-3814-8_12" target="_blank" >10.1007/978-981-99-3814-8_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hardware-Aware Evolutionary Approaches to Deep Neural Networks

  • Original language description

    This chapter gives an overview of evolutionary algorithm (EA) based methods applied to the design of efficient implementations of deep neural networks (DNN). We introduce various acceleration hardware platforms for DNNs developed especially for energy-efficient computing in edge devices. In addition to evolutionary optimization of their particular components or settings, we will describe neural architecture search (NAS) methods adopted to directly design highly optimized DNN architectures for a given hardware platform. Techniques that co-optimize hardware platforms and neural network architecture to maximize the accuracy-energy trade-offs will be emphasized. Case studies will primarily be devoted to NAS for image classification. Finally, the open challenges of this popular research area will be discussed.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-13001S" target="_blank" >GA21-13001S: Automated design of hardware accelerators for resource-aware machine learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Handbook of Evolutionary Machine Learning

  • ISBN

    978-981-9938-13-1

  • Number of pages of the result

    30

  • Pages from-to

    367-396

  • Number of pages of the book

    768

  • Publisher name

    Springer Nature Singapore

  • Place of publication

    Singapore

  • UT code for WoS chapter