ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150188" target="_blank" >RIV/00216305:26230/23:PU150188 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2023.emnlp-main.117/" target="_blank" >https://aclanthology.org/2023.emnlp-main.117/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness
Original language description
The emergence of generative large language models (LLMs) raises the question: what will be its impact on crowdsourcing? Traditionally, crowdsourcing has been used for acquiring solutions to a wide variety of human-intelligence tasks, including ones involving text generation, modification or evaluation. For some of these tasks, models like ChatGPT can potentially substitute human workers. In this study, we investigate whether this is the case for the task of paraphrase generation for intent classification. We apply data collection methodology of an existing crowdsourcing study (similar scale, prompts and seed data) using ChatGPT. We show that ChatGPT-created paraphrases are more diverse and lead to at least as robust models.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů